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USE OF POTENTIAL FLOW STATE-SPACE INFLOW MODELING 
FOR MASS SOURCE ROTORS 

Ke Yu and David A. Peters ^ 
Department of Mechanical Engineering 

Washington University, Campus Box 1185, St. Louis, MO 63130-4899, USA 

Abstract 

In the field of rotorcraft .dynamics, it is significant to all 
that the induced inflow field is well understood and modeled. 
A large number of methodologies have been developed in the 
past years, among which the state-space model is highly 
recognized for its outstanding advantage in real-time 
simulation, preliminary design, dynamic eigenvalue analysis 
and etc. Recent studies have shovm success in representing the 
induced flow field everywhere above the rotor plane even with 
mass source terms as long as they have zero net flux. 
Nevertheless, non-zero net mass influx is expected in 
numerous situations, such as ground effect, mass source 
rotors, etc; and the incapability of previous models keeps the 
methodology's utilization in these cases. This work presents 
an extended potential flow state-space model derived firom 
potential flow momentum equation by means of Galerkin 
approach. The induced velocity and pressure perturbation are 
expanded in terms of closed-form, time-dependent coefficients 
and space-dependent associated Legendre functions and 
harmonics. Non-zero net mass flux terms are represented by 
the involvement of associated Legendre functions with equal 
degrees and orders. Validation, as well as discrepancies, of the 
inclusion of such terms is investigated. Numerical simulation 
of fi-equency responses in axial and skew-angle flight are 
presented and compared with exact solutions obtained by 
convolution integral. Also the study shows that, unlike other 
pressure distribution responses, non-zero mass influx exhibits 
high sensitivity to the choice of number of states in the 
velocity expansion. Error analyses are performed to show this 
sensitivity. 

Introduction 

An understanding of the flow field during flight is 
necessary in order to make design improvements to the 
performance and maneuverability of a helicopter. This is a 
crucial topic in preliminary design and flight test. As with all 
other topics in research, there is more than one approach to the 
understanding of the flow field. CFD is probably the most 
fundamental method available. Nevertheless, the flexibility of 
CFD is offset by the large computational effort and the 
difficulty in capturing firee vorticity. Vortex lattice results are 
another approach vdth great utility, but they can often be 
computationally prohibitive for analyses that require real-time 

simulation or eigenvalues. In these cases, a finite-state model 
of the inflow is required. This paper concentrates on finite- 
state modeling. 

Sissingh [1] first proposed a simple, first-harmonic inflow 
and lift distribution without any dependence on the radial 
position of the rotor blade. That model assumed an 
instantaneous relationship between perturbadons of induced 
velocity and perturbations in thrust. Sissingh showed good 
correlation of predicted data with flight measurements. In the 
eariy 1970s, Ormiston and Peters [2] introduced the idea of 
expressing the induced flow in state-variable form. The first 
theory was a quasi-steady formulation with the assumption of 
a linear relationship between perturbations of inflow 
components and rotor thrust. This formulation represents the 
induced rotor inflow by a truncated Fourier series and 
assembles a theory that relates the inflow field at blades to the 
lift and circulation developed on the blades. This significantty 
simplifies the analysis of dynamic inflow. Peters later 
extended this model to the unsteady condition [3] by addition 
of the apparent mass of the inflow distributions. Though good 
correlations were obtained at axial or edgewise flow, a 
transition between these conditions was not allowed by this 
model. 

In the 1980s, Peters and Pitt developed a linear, unsteady 
theory that relates transient rotor loads to the overall transient 
response of the rotor induced flow field [4-6]. This model is 
based on unsteady potential flow theory with the assumption 
that the total pressure due to a velocity field can be formed by 
superimposing the unsteady pressure and the static pressure of 
that field. Even though this theory proved to be practical and 
easy to use with good correlations, it is a low-order 
approximation and is limited to only the crudest wake 
description of uniform flow with one simple gradient. In 1987, 
Peters and He [7] turned to a higher-harmonic theory of 
dynamic inflow. The pressure distribution, as well as the 
inflow field, is extended to include an arbitrary number of 
harmonics and an arbitrary number of radial functions per 
harmonic. This new model gives excellent correlation on the 
rotor disc plane and in a more detailed fashion than the Pitt 
model. However, it obtains only the normal component of 
flow at the rotor disk and does not provide all three 
components of flow on and above the rotor disk plane. In 
addition, it cannot be applied to cases with mass injection at 
the rotor. In 2001, based on a two-dimensional model studied 
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by Nelson [8], Morillo extended the Peters-He Model to 
include an additional set of functions, which enabled the new 
model to remove most of the limitations of the previous model 
[9]. 

However, no net mass flow terms were considered in 
these models. Therefore, for helicopters with mass source 
rotors, as well as those undergoing ground effect could not be 
studied. This research reviews and extends Morillo's work, 
rather than builds new models, since a good correlation has 
already been established. Net mass flow components are 
considered in the flow field by presence of certain pressure 
terms. Numerical results are compared with those from 
convolution integration, and in some special cases, an exact 
solution in closed-form. Also, the influence of the choice of 
number of states, including number of discontinuous functions 
and mass injection functions, is investigated through eiror 
analysis. Optimized results of individual pressure distribution 
of net mass influx are obtained and compared to results firom 
original formation. 

Notation 

U/m Velocity potential function 

«:.«: Velocity expansion coefficient 

k^K Velocity expansion coefficient 

[D] Damping matrix 

E Error norm 
H: Coefficient 

i Imaginary number 

K Legendre constant 

L Influence coefficient matrix 

[Ml Mass matrix 

m Order of Legendre function (Harmonic number) 
n Degree of Legendre function (Polynomial number 
P Pressure 

P:,Q: Associated Legendre functions 

P:,Q: Normalized associated Legendre functions 

V Velocity 

X Inflow angle 

s. Kronecker delta 

o; Pressure potential function 

V, r), w Ellipsoidal coordinates 

P: Normalization factor 

g:,<^: Change of variable constant 

c.c Pressure expansion coefficient 

<f Inflow coordinate unit 

Superscripts and Subscripts 
( y Cosine terms 

( )' Sine terms 

( )" Harmonic number 

( ) Polynomial number 

( ) Axial component 

Extended State-Soace Model 

A state-space model is developed with velocity 
perturbation and pressure perturbation expanded in series such 
that 

^=-SZ(c«>r+c«5r) 
in=0 n=m 

(1) 

(2) 
01=0 n-m 

where 

O™ = <D; co5{mf) = P," (v)e; {iTl)<x>s[mw) 

O- = o; sin(m^) = P" [v)Q" (iTi)sia[m\j7) 
(3) 

(4) 

P"{v)   and  Q"{'V)  are normalized associated Legendre 

function of the first and second kind, respectively. 

with 

e:('0)= 

^"   e:('0) 

2^    '       ^'       {n-m)\\ 

.    ...n.^,yH{n + m-l)U      ^^^^^jj 
^    >       ^'       {n-m)\\ 

(5) 

(6) 

(7) 

(8) 
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r™ and r7, a" and b" are time-dependent pressure 
coefficients and velocity coefficients, respectively. These 
coefficients are governed by the final non-dimerisionalized 
matrix-form momentum equation 

[M^]{<}.[D^][0]-'[M']K} = [D=]{C}      (9) 
OT = 0,1,2,3,---,   « = OT + l,m + 2,w + 3,---. 

with a change of variables from a" to a" 

{'i'rr{«:}=Kc:.+?>:-.}'K}     0°) 

where 

and 

o-: = == (11) 
ii::^(2« + l)(2« + 3)[(« + lf-m^J 

n*m (12) ?: = 

v=0.8 
v=: .0 

v=0.8 

v=0.4 

v=0    / 
  

n=i.2 / 

^     > 
L —Y^N/ 

v=-0.4 -- ___^^    v=-0.4 

v= -0.8 
1 '2         v=-0.8 

v=-1.0 

(13) 

Figure 1. Ellipsoidal coordinates viewed in x-z plane 

E: = 
(w + /«-l)!!(«-w-l)!! 

(« + /n)!!(«-m)!! 
(14) 

Superscripts "c" in matrix notation imply these are cosine 
components of the complete equation. However, Eqs. (1) and 
(2) imply that the sine and cosine terms are completely 
decoupled, an identical set of equations of sine components 
could be written. The spatial variables are locations of 
investigation in an ellipsoidal coordinates system as shown in 
Fig. 1. ^ is the azimuthal angle measured counterclockwise 

from negative jc-axis in x-y plane. 

The state-space model represented by Eq. (9) yields 
excellent correlation in all three components of velocity 
perturbations everywhere in the flow field above the rotor 
plane for various pressure distributions, which are determined 
uniquely by rotor conditions (i.e., number of blades, sectional 
lift, blades' rotating frequency and etc). However, the net 
mass flow terms, which are presented by associated Legendre 
functions with equal orders and degrees, i.e., m=n, in pressure 
expansions, are not adopted in formulation. This is based on 
the fact that these terms yield infinite kinetic energy in the 
flow field. Without losing generality, assume a pressure 
distribution P = -Oj. The vertical component of induced 

velocity yields 

v.=i>s=?o°(v)a°(/'7) 
and therefore 

on-disc 

off-disc 

(15) 

(16) 

For off-disc area, if Taylor series is used for large r] 

2.   -1 V, =—tan 
n 

i[\    1 
n\r}   iTf 

(17) 

then the kinetic energy per unit mass of the induced flow 
crossing the off-disc rotor plane (i' = 0, a <;/<«') is that 

(18) 

Equation (18) fiilly expresses the major discrepancy of 
including non-zero net mass flux terms in the model: 
Involvement of net mass flux terms, which happens in 
tremendous practical cases, will theoretically introduce infinite 
energy in the flow field. However, the infinite result is true 
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based on two assumptions: the media field does not dissipate 
energy at all, and the whole system, including the media field 
to a distance of infinity, is in steady state. In reality, first of all, 
damping of air, even though very small under the condition of 
helicopter operating, vdll actually dissipate the energy and the 
induced velocity decreases much faster away fi-om the rotor 
than those shown in Eq. (17). And secondly, the operating 
period of helicopter is not infinite. Furthermore, the study of 
induced flow is not the final goal in the study of helicopter's 
performance - the ultimate goal is to see how it affects the 
behavior of helicopter blades, fuselage or personnel on the 
ground if it is close to the ground. Therefore, the most 
important concern is the area on or close to the actuator disc. 
Based on this aspect, if the results have good correlation at on- 
disc, or close-to-disc, area, the involvement of net mass flux 
could be tolerated. 

On the other hand, to avoid inconvenience of numerical 
integration of velocity potentials, the variable change shown in 
Eq. (10) prohibits any m=n terms in velocity expansion in Eq. 
(2). However, this prohibition is only for the mass matrix 
[M'I and the influence coefficient matrix [0] and has no 

effect on the damping matrix [D"], which is the coefficient 

matrix of the pressure coefficient vector on the right hand side 
of Eq. (9). Therefore, it might be possible to include w = n in 
r" but not in the velocity potentials. 

To include net mass flux terms, i.e., P," {v) and Q2 (it]), 

in the pressure distribution, the damping coefficient matrix 
[D"] on the right hand side of Eq. (9) will be required to have 

extra columns. Based on the goal that the new model should 
reduce to Eq. (9) if net mass flux terms are not considered, 
these new entrees are desired to follow the same formulation 
of [D']. The formulation of damping matrix [D'] follows 

that 

D"" =—S,„ 

r = m,  y + r = odd,   w + /n = odd 

r = m, y + r = even, n + /« = even 

(19) 

-1)12 D- 2        V(2y + l)(2/» + l)       (,,3„-.) 

r = m,  y + r = even,   M + /n = odd (20) 

r = m,  J + r = odd, n + m = even 

D™ = 0      r^m 

where r andy are indices introduced by trial fiinctions. 

Indeed, the formulation of damping matrix does not 
exclude any equal degree-order associated Legendre functions 
either in its closed-form representation or derivation; and 
therefore, the net mass flux terms could be included in the 
pressure distribution. Considering that the matrices on the left 
hand side have to be square, the extended momentum equation 
is expressed as 

[M^]{<}+[D^][U]"'[M']{«:} = [D^]{C}    (22) 

where [5^] is the extended damping matrix. 

Error analysis and simulation 

The validity of the proposed state-space model, Eq. (22), 
is investigated by an error analysis. In this study, error is 
defined by 

,2 _ M E' = (23) 

(21) 

where v, and v, are velocity perturbafions fi-om state-space 
model and convolution/closed-form solution, respectively, r 
is the radial location, A and B are range of desired area of 
investigation. Since the accuracy of the model is of less 
importance off the disc, errors at location are multiplied by 

weigh coefficient l/^l + T/^ , therefore, the further from the 
disc, the less error is counted in the analysis. And from this 
point, for the sake of convenience, »i+/i=even and »i+7i=odd 
terms will be called even and odd terms, respectively. 

The previous Peters-He model suggests that the state- 
space model yields exact solution at edge-wise inflow if there 
are no even terms in the velocity expansion. Morillo expanded 
the model to include mass injection terms in pressure 
expansion, which demands involvement of even as well as odd 
terms in velocity. Based on the fact that the net-mass flow 
terms are special cases of even terms in the excitation, the 
involvement of even terms in the velocity expansion is also 
inherited. However, it is intuitive that the number of even 
terms will change the correlation with exact solution. 
Verification of this assumption is done by error analyses wdth 
various numbers of even terms in the state-space model. In 
this study, the number of even and odd terms is represented by 
the number of terms in the zeroth harmonic, that is, how many 
odd or even terms with m=0 are included. 
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For all of the illustrations shown, the pressure distribution 
is such that 

^ = -*: = -P: {^)Q: (.iri)cos{my/) (24) 

To exam the generality of proposed model, various 
excitation frequencies, as well as skewed angles along with 
different pressure distribution, are evaluated and discussed. 

Figure 2 shows an example of error analysis for the 
pressure distribution P = -0° with zero and infinite 
frequencies during axial flow. 2(a) shows the analysis with 
equal numbers of odd and even terms in the model, while 2(b) 
shows the effect of number of even terms in the model as the 
number of odd terms is fixed at 22. From 2(a) and 2(b), it is 
shown that the precision of results follows a rather smooth 
trend within a certain range of number of states that yields 
convergence. Within that range, the precision intends to 
increase with more terms included. Numerical simulation 
verified that beyond the range of convergence, (for example, 
number of states greater than 20 as shown in 2(a)), the 
convergence starts to break down and collapse rapidly if the 
number of states goes even higher. However, plots 2(c) and 
2(d) are not following the same pattern. The accuracy of 
simulation keeps oscillating with little change in the number 
of states, undergoing more like a saw-tooth action. This 
behavior starts to appear with increase in either the frequency 
or the skewed-angle of flight. More simulation results verified 
that increase of fi-equency or skew angle shrinks the range of 
convergence. If the skew angle is changed, the number of even 
terms included becomes more and more important to the 
model's convergence. Some of these phenomena, like the 
increase of skew angle decreases the range of convergence, 
agree with that of zero net mass flow pressure distributions. 
But the saw-tooth behavior, or in another words, sensitivity 
with the number of states, is not seen before. 

Figures 3-7 illustrate the on-disc optimized fi-equency 
responses of pressure distribution P = -<bl with various 
system configurations. In all plots, red circles are results from 
the convolution integral; blue triangles are results from closed- 
form solutions, which are available in limited cases; and black 
dots represent results of the proposed state-space model by 
Galerkin approach. 

From Figs. 2(a) and 2(b) it is observed that when the Odd 
terms and even terms are all 11 in the zeroth harmonic, this 
state-space model yields the highest accuracy of zero 
frequency response with respect to the exact solution. 
Numerical verification plotted in Fig. 2 shows, even though it 
is the optimal choice, visible errors still exist in both on-disc 
and  off-disc  area.  As  discussed,  the  velocity expansion 

excludes any terms with m = n, in which m = n = Q is an 
extreme case. Notice if the pressure distribution is P = -Oj, 
From Eq. (16), the closed-form solution of the z-component of 
on-disc velocity perturbation is uniform. However, there is no 
function in the velocity expansion that has property of 
uniformity on-disc. In a general sense, it requires a large 
number of terms in the velocity expansion to yield a good 
approximation. On the other hand, error analysis suggests that 
the convergence collapses after the number of states goes 
beyond a certain range. These two facts basically contribute to 
this error shown in Fig. 3(a). On the off-disc area, the Galerkin 
approach decays into the far field faster than the exact 
solution. This is expected and has been discussed in the 
previous section. 

Figure 4 is the frequency response for infinite frequency. 
Based on the fact that the response achially becomes zero in 
such case, cov., i = z,r,ii/ , is plotted instead. It shows that the 
on-disc and far off-disc areas have good correlation with exact 
solution, yet relatively large oscillations appear at the edge of 
actuator. This is a consequence of using continuous expansion 
functions approximate a continuous velocity expansion. 

Based on individual error analyses, optimized results of 
frequency response under various conditions are obtained and 
plotted in Figs. 5-7. Figure 5 shows the response one disc 
radius above the rotor plane in axial flow. Again it is noticed 
that the error is obvious and somewhat consistent, but it is of 
the same order as the off-disc error in Fig. 1(a). 

Figure 6 shows the response at zero frequency in skewed 
flight. Considering that the vortices do not die out in the 
skewed wake, the induced flow will be larger in the trailing 
edge. Morillo showed that, in skewed flow, the number of 
even terms should be reduced.. However, it is also desired to 
have certain number of even terms in the velocity expansion 
because of the inclusion of even terms in the pressure 
distribution. A compromise could be found, but the error off- 
disc especially at the trailing edge is amplified. The accuracy 
of the model is evaluated on-disc in this research and indeed 
Fig. 6 shows that to a good extent. In further research, an over- 
all error analysis could be performed to find another optimized 
number of states to give better correlation off-disc, with 
certain accuracy loss in the on-disc area. 

Figure 7 shows response of a higher frequency, skewed- 
angle flight. Despite all the reasons discussed in Fig. 6, Fig. 7 
shows good correlations in all four non-zero components. This 
is a direct result of increase of excitation frequency. For any 
non-zero frequency, the response is that 

{x} = [B + toA]''{T} (25) 
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and the error, if any, is decreased by factor of 

B 
'7=r |jft;A + B| 

As long as the state-space model is within convergence 
range, the increase of frequency always plays a role reducing 
the error. 

For purposes of illustration of generality of the model. 
Figs. 8 and 9 are presented to show the responses of pressure 
distribution P = -0[ with zero and infinite frequencies. 

From all the plots, it can be seen that the radial 
components always have good correlation with exact solution, 
even when the axial components yields large error. In cases of 
on-disc optimization, the low power radial function will 
decrease off-disc errors and therefore yields better 
correlations. 

Conclusion 

It is shown that the proposed state-space model is capable 
of treating non-zero net mass flux terms in the pressure 
distribution. The discrepancy is discussed and validation is 
performed through error analyses and numerical verifications. 
Based on the results obtained, the following conclusions are 
made 

1) The proposed state-space with extended damping 
matrix is capable of including non-zero mass flux 
terms in the pressure distribution. The fact that these 
terms yield infinite kinetic energy is considered. 
Based on realistic situation, this discrepancy is 
discarded and numerical results agree with that in 
reality. 

2) The model has the disadvantage that the net mass 
flux terms give sensitivity to the model. Even though 
individual net mass influx could be treated precisely, 
the combination of more than one flux term could 
result in unreliable result. Further work needs to be 
done in this subject. 

3) The convergence of model is not ideal with low 
frequency, large skew-angle flight. Error on the 
trailing edge becomes significant in these cases. A 
correction factor is needed in skewed angle 
condition. 

4) A trade-off sometimes exists during optimization. 
The choice of number of states is based on the 
importance of location of induced flow. On-disc 
optimization usually gives excellent correlation on- 
disc, but could lose convergence off-disc. If an 

overall area optimization is adopted, the excellence 
of on-disc correlation will be reduced. 

(26) Other adjustments and calibrations are always of interest 
to improve the proposed model. However, a major fiiture work 
is to apply the complete state-space model with blade element 
theory and blade dynamics, and experimented results if 
available, to verily the complete validity of model. 
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Figure 2. On-disc error analysis comparing results from state-space model and convolution integral. Pressure 
distribution P = -*; with co = 0 ((a) and (b)) and <y = ~ ((c) and (d)). The state-space model in (a) and (c) 
uses various but equal numbers of even and odd terms (A) in the zeroth harmonic; In (b) it has 22 odd 
terms and various number of even terms (Af.) in the zeroth harmonic; In (d) it has 20 odd terms and various 
number of even terms {N.) in the zeroth harmonic. Responses are evaluated with 7 = 0" (on the actuator 
plane), z = 0 (axial inflow), i/f = 0',lSQ' (along fore-and-aft axis). 
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Figures Frequency response of pressure distribution  P = -K  with  ^ = 0. AU other components of induced 
velocities are zeroes. Both number of odd and even terms Included in state-space model are 11. Highest 
power of radial polynomials is 22. Responses are evaluated with 2 = 0' (on the actuator plane), ^ = 0 (axial 

inflow) W = 0- m (along fore-and-aft axis). Red circles present values of convolution Integral results at 
locations; blue triangles present results of closed-form solution; and black dots present results obtained by 
Galerkin approach. 

Figure 4. Frequency responses of pressure distribution P = -^l with ty = o=. All other components of mduced 
velocities are zeroes. Number of odd terms included in the state-space model is 10; Number of even terms is 
3 Highest power of radial polynomials is 20. Responses are evaluated with z = 0" (on the actuator plane), 
X = 0 (axial inflow), (/ = 0 MSO' (along fore-and-aft axis). Blue triangles present results of closed-form 

solution; and black dots present results obtained by Galerkin approach. 
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Figure 5. Frequency response of pressure distribution P = -*; witli w = 0. All other components of induced 
velocities are zeroes. Both number of odd and even terms included in state-space model are 11. Responses 
are evaluated with z = -l (one radius above the actuator plane), x = ^ (axialinflow), f/ = 0M80'' (along 
fore-and-aft axis). Red circles present values of convolution integral results at locations; blue triangles 
present results of closed-form solution; and black dots present results obtained by Galerkin approach. 
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Figure6. Frequency responses of pressure distribution P = -*S with a; =4.0. All other components of induced 
velocities are zeroes. Number of odd terms included In the state-space model Is 12; Number of even terms is 
5. Highest power of radial polynomials is 24. Responses are evaluated with z = 0" (on the actuator plane), 
;f = 45 , V^ = 0°,180' (along fore-and-aft axis). Red circles present results of convolution integral; and black 
dots present results obtained by Galerkin approach. 
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Figure 7. Frequency responses of pressure distribution P = -^l witli skew angle ;ir = 45', frequency fi; = 4. Number 

of odd terms is 12; number of even terms is 4. Highest power of radial polynomials is iV, = 24. Evaluation is 

performed on the actuator plane, 7 = 0". Plots (a) and (b) are real and imaginary parts, respectively, of 
vertical component of induced velocity. Plots (c) and (d) are those of radial component of induced velocity. 
Red circles present values of convolution integral results at locations; and black dots present results 
obtained by GalerWn approach. 
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Figures. Frequency response of pressure distribution P = -^\ with c;=0. All other components of Induced 
velocities are zeroes. Numbers of odd and even terms Included In state-space model are 11 and 10, 
respectively. Highest power of radial polynomial is 21. Responses are evaluated with z = 0" (on the actuator 
plane), x=^ (axial inflow), f = 0,180° (along fore-and-aft axis). Red circles present values of convolution 
integral results at locations; blue triangles present results of closed-form solution; and black dots present 
results obtained by Galerkin approach. 

Figure 9. Frequency response of pressure distribution P = -<b\ with fi; = oo. All other components of induced 
velocities are zeroes. Numbers of odd and even terms included in state-space model are 12 and 4, 
respectively. Highest power of radial polynomial is 23. Responses are evaluated with z = 0' (on the actuator 
plane), x=^ (axial inflow), v' = 0%180' (along fore-and-aft axis). Red circles present values of convolution 
integral results at locations; blue triangles present results of closed-form solution; and black dots present 
results obtained by Galerkin approach. 
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